MiDaS Depth Estimation Guide
Published: February 6, 2023 | Last Modified: May 13, 2025
Tags: ai computer vision depth estimation midas python cuda installation
Categories: Python AI Computer Vision
GitHub Repository
During installation, I ran into an issue where the CUDA package wasn’t found. Had to modify environment.yaml to:
name: midas-py310
channels:
- pytorch
- defaults
dependencies:
- nvidia::cuda-toolkit=11.7.0
- python=3.10.8
- pytorch::pytorch=1.13.0
- torchvision=0.14.0
- pip=22.3.1
- numpy=1.23.4
- pip:
- opencv-python==4.6.0.66
- imutils==0.5.4
- timm==0.6.12
- einops==0.6.0
Commands that were helpful for troubleshooting CUDA:
conda list env
conda env remove -n midas-py310
python -m torch.utils.collect_env
nvidia-smi
conda install cudatoolkit
conda install -c "nvidia/label/cuda-11.7.0" cuda-toolkit
Activate the Conda environment
conda activate midas-py310
Run MiDaS
From the Conda Shell, cd to the MiDaS directorycd C:\Users\trima\MiDaS
Place the image frames you would like to process in the “input” directory and run one of the following commands:
# dpt_beit_large_512
python run.py --model_type dpt_beit_large_512 --input_path input --output_path output --grayscale --optimize
# dpt_swin2_large_384
python run.py --model_type dpt_swin2_large_384 --input_path input --output_path output --grayscale --optimize
# dpt_swin2_tiny_256
python run.py --model_type dpt_swin2_tiny_256 --input_path input --output_path output --grayscale --optimize
For “inferno” color mapping, omit the –grayscale flag.