Sections

  • Home
  • Archive
  • LLM Prompts
  • Posts

BTC

Bitcoin QR Code

Recently Modified

  • SMTP Test With PowerShell on 2025-07-02
  • Videos as Teams Backgrounds on 2025-07-02
  • UDM Parameters for Google Search on 2025-06-18
  • Troubleshoot Crashing Apps with ProcDump & WinDbg on 2025-05-01
  • Stub Title on 2025-03-07
  • Automated IIS Application Pool Restart with PowerShell on 2024-10-16
  • Managing Microsoft Office Versions with OfficeC2RClient on 2024-09-10
  • Automated Batch Image Compression with Python on 2024-07-30
  • How to Find Your Public IP Address on 2024-06-24
  • Complete DNS Records Reference Guide on 2024-06-06

Python NetworkX Library for Network Graph Visualization

Published: August 15, 2023 | Last Modified: May 13, 2025

Tags: python networkx data-visualization graphs network-analysis

Categories: Python



  • Environment Setup
  • Python Script
  • JSON Schema
  • Graph Output

Environment Setup

I ran into an issue when running pip install networkx. I had to CD to the path where I had Python installed. To find out where Python is installed, use:

where Python

and the output should resemble:

C:\Users\<you>\AppData\Local\anaconda3\python.exe
C:\Users\<you>\AppData\Local\Programs\Python\Python311\python.exe
C:\Users\<you>\AppData\Local\Microsoft\WindowsApps\python.exe

followed by:

cd C:\Users\<you>\AppData\Local\Programs\Python\Python311\python.exe
pip install networkx

Python Script

import json
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Ellipse

# Load the JSON data
with open("dummy-data.json", "r") as file:
    data = json.load(file)

# Create a graph
G = nx.DiGraph()

# Add nodes and edges to the graph from the JSON data
node_colors = {}
group_nodes = {}  # {group: [node1, node2, ...]}
for group, details in data["groups"].items():
    if group not in group_nodes:
        group_nodes[group] = []
    for edge in details["edges"]:
        G.add_edge(edge["source"], edge["target"], color=details["color"], label=edge["label"])
        node_colors[edge["source"]] = details["color"]
        group_nodes[group].append(edge["source"])
        group_nodes[group].append(edge["target"])

# Compute node positions
width, height = 2, 2
pos = {}
center_node = "source-node"
pos[center_node] = (width / 2, height / 2)
node_colors[center_node] = "#8888FF"

# Positioning nodes around a circle
shell_nodes = [node for node in G.nodes() if node != center_node]
angle_step = 2 * np.pi / len(shell_nodes)
for index, node in enumerate(shell_nodes):
    angle = index * angle_step
    pos[node] = (width/2 + 0.75*np.cos(angle), height/2 + 0.75*np.sin(angle))

# Set DPI for the desired resolution
dpi = 256
fig, ax = plt.subplots(figsize=(24, 24), dpi=dpi)

# Legend proxy artists
from matplotlib.patches import Patch
legend_handles = [
    Patch(facecolor='#FF8888', edgecolor='black', label='group-01'),
    Patch(facecolor='#88FF88', edgecolor='black', label='group-02')
]

colors = [node_colors[node] for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_color=colors, node_size=20000, ax=ax)
nx.draw_networkx_labels(G, pos, ax=ax, font_size=14)

for edge in G.edges(data=True):
    nx.draw_networkx_edges(G, pos, edgelist=[(edge[0], edge[1])], ax=ax, edge_color=edge[2]["color"], width=2)

edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14)

# Draw ellipses around groups of nodes
for group, nodes in group_nodes.items():
    unique_nodes = list(set(nodes))
    coords = [pos[node] for node in unique_nodes]
    x_coords, y_coords = zip(*coords)
    center = np.mean(x_coords), np.mean(y_coords)
    distances = [np.sqrt((x - center[0])**2 + (y - center[1])**2) for x, y in coords]
    max_distance = max(distances)
    ellipse = Ellipse(center, 2*max_distance, 2*max_distance, fill=False, edgecolor=node_colors[unique_nodes[0]], linestyle="--")
    ax.add_patch(ellipse)

# Adding the legend to the plot
ax.legend(handles=legend_handles, loc='upper right')

plt.axis("off")
plt.tight_layout()
plt.savefig("graph.png", format="png")
plt.show()

JSON Schema

{
    "nodes": [],
    "groups": {
        "group-01": {
            "color": "#FF8888",
            "edges": [
                {
                    "source": "group-01-node-01",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-02-node-02",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-03-node-03",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-03-node-04",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-04-node-05",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-05-node-06",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-06-node-07",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-07-node-08",
                    "target": "source-node",
                    "label": "label"
                }
            ]
        },
        "group 02": {
            "color": "#88FF88",
            "edges": [
                {
                    "source": "group-02-node-01",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-02-node-02",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-02-node-03",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-02-node-04",
                    "target": "source-node",
                    "label": "label"
                },
                {
                    "source": "group-02-node-05",
                    "target": "source-node",
                    "label": "label"
                }
            ]
        }
    }
}

Graph Output

Categories

  • Active Directory (4)
  • AI (3)
  • Azure AD (1)
  • C# (2)
  • C++ (1)
  • Computer Vision (1)
  • DNS (1)
  • Exchange (2)
  • Google (1)
  • Image Processing (2)
  • Java (32)
  • JavaScript (17)
  • Machine Learning (3)
  • MASM (3)
  • Media Processing (1)
  • Microsoft 365 (2)
  • Microsoft Office (1)
  • Microsoft Teams (1)
  • Networking (4)
  • Nodejs (1)
  • Office 365 (1)
  • P5.js (9)
  • PowerShell (25)
  • Processing (14)
  • Programming (1)
  • Python (19)
  • Reference (1)
  • Security (8)
  • Shell (16)
  • Stub (1)
  • System Administration (4)
  • Teams (1)
  • Visualization (1)
  • Web Administration (1)
  • Web Development (2)
  • Windows (9)

Tags

  • 10PRINT (1)
  • 3d-Modeling (1)
  • 3n+1 (1)
  • Account Management (1)
  • Acl (1)
  • Active-Directory (10)
  • Ad Sync (1)
  • Ai (9)
  • Android (1)
  • Animation (10)
  • Api (2)
  • Arrays (1)
  • Assembly (3)
  • Audio (3)
  • Audio Conversion (1)
  • Automation (13)
  • Azure (4)
  • Azure Ad Connect (1)
  • Base64 (1)
  • Bat (2)
  • Batch-Processing (1)
  • Bipartite Graph (1)
  • Bitset (1)
  • Buddhabrot (1)
  • Calendars (1)
  • Channel Management (1)
  • Client-Side (1)
  • Cmd (1)
  • Coding Challenge (15)
  • Collaboration (1)
  • Collatz Conjecture (1)
  • Command-Line (6)
  • Compliance (1)
  • Computer-Vision (3)
  • Coqui-Tts (1)
  • Counting Sort (1)
  • Creative-Coding (1)
  • Cuda (2)
  • Curl (1)
  • Cybersecurity (1)
  • Dag (1)
  • Data-Visualization (5)
  • Debugging (1)
  • Decoding (1)
  • Depth Estimation (1)
  • Device Management (1)
  • Directed Acyclic Graph (1)
  • Directory-Services (1)
  • Disjoint Set (1)
  • Distance (1)
  • Dkim (1)
  • Dmarc (1)
  • Dns (2)
  • Domain (1)
  • Domain Controller (1)
  • Domain Security (1)
  • Domain-Management (1)
  • Download (2)
  • Drivers (1)
  • Drives (1)
  • Education (1)
  • Email (1)
  • Email Management (1)
  • Email Security (2)
  • Email-Archiving (1)
  • Events (1)
  • Exchange (1)
  • Exchange-Management (1)
  • Exchange-Online (2)
  • ExchangeOnlineManagement (3)
  • Ffmpeg (4)
  • Fibonacci (1)
  • File-Permissions (1)
  • File-System (1)
  • Film (1)
  • Filtering (1)
  • Finance (1)
  • Firewall (1)
  • Flask (1)
  • Fractal (3)
  • Frame Interpolation (1)
  • Gal (1)
  • Gmail (1)
  • Google Forms (1)
  • Google-Apps-Script (1)
  • Google-Drive (1)
  • Gpu (1)
  • Graphs (1)
  • Group (1)
  • Group Management (1)
  • Group-Policy (1)
  • Gsuite (1)
  • Hacked Accounts (1)
  • Hardware (1)
  • Hex Encoding (1)
  • Iis (1)
  • Image-Processing (4)
  • Images (3)
  • Incident Response (1)
  • Insertion Sort (1)
  • Installation (1)
  • Interactive (9)
  • Ip-Address (1)
  • Ip-Addressing (1)
  • Java (1)
  • Javascript (5)
  • Juno (1)
  • Jupiter (1)
  • K-Means (1)
  • Kattis (6)
  • Keyboard (1)
  • Knowledge-Graphs (1)
  • Kruskal's Algorithm (1)
  • Lan (1)
  • Llm (2)
  • Local Administrator (1)
  • Local-Ai (2)
  • Logging (1)
  • Lorenz System (1)
  • M365 (3)
  • Machine-Learning (6)
  • Maximum Flow (1)
  • Media Processing (1)
  • Merge Sort (1)
  • Microsoft Teams (1)
  • Microsoft-Office (1)
  • Midas (1)
  • Minimum Spanning Tree (2)
  • Mistral-7b (1)
  • Monitoring (1)
  • Moondream (2)
  • Multilingual (1)
  • Mx (1)
  • N-Central (1)
  • Natural Language Processing (1)
  • Net (2)
  • Netsh (2)
  • Network (1)
  • Network Drives (1)
  • Network-Analysis (1)
  • Network-Security (2)
  • Networking (5)
  • Networkx (1)
  • Nlp (1)
  • Nslookup (1)
  • Obfuscation (1)
  • Office-365 (2)
  • Office365 (1)
  • Officec2rclient (1)
  • Open Simplex Noise (3)
  • Openai (1)
  • Optimization (1)
  • P5.js (2)
  • P5js (1)
  • Password Management (2)
  • Password-Generator (1)
  • Passwords (2)
  • Perlin Noise (1)
  • Permissions (2)
  • Phishing (1)
  • Photo-Editing (1)
  • Pil (1)
  • Pillow (1)
  • Port-Management (1)
  • Powershell (22)
  • Prim's Algorithm (1)
  • Prime Numbers (3)
  • Printers (1)
  • Procdump (1)
  • Processing (2)
  • Programming (2)
  • Python (15)
  • Python-Script (1)
  • Pyvis (2)
  • Qr-Code (1)
  • Rdp (1)
  • Reference (1)
  • Registry Modification (1)
  • Remote-Access (1)
  • Reporting (1)
  • Reports (3)
  • Robocopy (1)
  • Screen Recording (1)
  • Scripting (1)
  • SDK (1)
  • Security (9)
  • Security Analysis (1)
  • Security Management (1)
  • Settings (1)
  • Shell (4)
  • SID (1)
  • SMTP (2)
  • Sorting (3)
  • Sound (1)
  • Space (1)
  • Speech Recognition (1)
  • Spf (1)
  • Spiral (1)
  • Stable-Diffusion (2)
  • Stocks (1)
  • String (1)
  • Stub (1)
  • Subnets (1)
  • Synchronization (1)
  • Sysinternals (1)
  • System-Administration (13)
  • Systeminfo (1)
  • Team Management (1)
  • Team Ownership (1)
  • Tensorflow (1)
  • Therafit (1)
  • Time (1)
  • Topological Sort (1)
  • Troubleshooting (4)
  • Tzutil (1)
  • UDM (1)
  • Uri (1)
  • Uri Encoding (1)
  • User-Management (4)
  • Uva (9)
  • VBScript (1)
  • Version-Management (1)
  • Video (5)
  • Video Conversion (1)
  • Visualization (3)
  • Web-Administration (1)
  • Web-Development (1)
  • Wifi (1)
  • Win32_OperatingSystem (1)
  • Windbg (1)
  • Windows (17)
  • Windows 10 (1)
  • Windows 11 (1)
  • Windows-Defender (1)
  • Windows-Server (1)
  • Windows-Update (1)
  • Wmic (1)
  • Youtube-Dl (1)
  • Yt-Dlp (2)

© 2025 Ghostfeed theme by Tristan Madden. All rights reserved.